基于大语言模型的自主智能体系统

LLM Powered Autonomous Agents

来源 https://lilianweng.github.io/posts/2023-06-23-agent/


1. 目录 / Agenda

  1. 智能体系统概览 / Overview
  2. 组件一:规划(Planning) / Planning
  3. 组件二:记忆(Memory) / Memory
  4. 组件三:工具使用(Tool Use) / Tool Use
  5. 典型案例 / Case Studies
  6. 关键挑战 / Main Challenges
  7. 总结 / Conclusion

2. 智能体系统概览 / Overview

中文:
LLM(大语言模型)充当自主智能体的核心控制器。智能体通过规划、记忆和工具使用三个主要模块执行任务。
English:
LLMs (Large Language Models) serve as the core controller of autonomous agents. The agent performs tasks through three main modules: Planning, Memory, and Tool Use.


3. 模块一:规划 / Planning

中文:

  • 任务分解(Task Decomposition):通过 Chain of Thought 和 Tree of Thoughts 等方法分解任务。
  • 自我反思(Self-Reflection):通过反思优化任务执行,采用 ReAct、Reflexion 等技术。
    English:
  • Task Decomposition: Break down tasks using methods like Chain of Thought and Tree of Thoughts.
  • Self-Reflection: Optimize task execution through reflection using techniques like ReAct and Reflexion.

自我反思 /Self-Reflection

中文:

  • ReAct:推理与行动的结合,循环反思和优化。
  • Reflexion:通过失败案例改进策略。
    English:
  • ReAct: Combining reasoning and acting, with iterative reflection and optimization.
  • Reflexion: Improving strategies through failure cases and reflection.

4. 模块二:记忆 / Memory

中文:

  • 短期记忆:基于上下文窗口的 in-context learning
  • 长期记忆:外部向量存储,支持快速检索(MIPS)
    English:
  • Short-term Memory: Based on in-context learning with the model’s context window.
  • Long-term Memory: External vector storage supporting fast retrieval (MIPS).

5. 模块三:工具使用 / Tool Use

中文:

  • 目的:扩展智能体的能力,如调用 API 或执行代码。
  • 框架:MRKL、TALM、Toolformer 等方法让 LLM 学会使用工具。
    English:
  • Purpose: Extend the agent’s capabilities, such as calling APIs or executing code.
  • Frameworks: Methods like MRKL, TALM, and Toolformer enable LLMs to learn to use tools.

6. 典型案例(Case Studies) / Case Studies

中文:

  • ChemCrow:化学智能体,结合专家工具
  • 科学发现智能体:自动执行实验设计
  • Generative Agents:模拟类人行为的虚拟角色
    English:
  • ChemCrow: A chemical agent combining expert tools.
  • Scientific Discovery Agent: Automatically executes experiment designs.
  • Generative Agents: Virtual characters simulating human-like behaviors.

7. 关键挑战 / Main Challenges

中文:

  1. 有限上下文长度:限制了任务执行的复杂性
  2. 任务规划不稳定:长任务执行时容易失效
  3. 自然语言接口不可靠:模型可能出现输出错误或拒绝执行命令
    English:
  4. Limited Context: Restricts the complexity of task execution.
  5. Unstable Task Planning: Long task executions may fail.
  6. Unreliable Natural Language Interface: The model may output errors or refuse to execute commands.

8. 总结 / Conclusion

中文:

  • LLM 驱动的自主智能体展示了强大的任务执行能力,但在上下文、规划和接口方面仍面临挑战。
  • 未来方向:增强反思机制、改进工具调用接口、解决上下文限制。
    English:
  • LLM-powered autonomous agents demonstrate strong task execution capabilities but still face challenges in context, planning, and interfaces.
  • Future Directions: Strengthening reflection mechanisms, improving tool usage interfaces, and addressing context limitations.
张贴在ai

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注